Bueno, una de mis aficiones, aunque par alguna gente no se puede considerar una afición es el mundo de las matemáticas, hoy os voy hablar de la conjetura de Polignac.
Esta conjetura realizada por Alphonse de Polignac en 1849 y sostiene:

Hay un número infinito de números primos (r, s) tales que r – s = t, siendo t un número par.

O dicho en otras palabras que para cualquier numero primo n, hay un número infinito de primos de tamaño n, o también lo podemos ver como que existen infinitos casos de dos números primos consecutivos cuya diferencia sea n.

Esto sigue siendo solo una conjetura desde 1849, hasta día de hoy nadie ha sido capaz de rechazarla, ni de encontrar una demostración valida.

Comparte:
  • services sprite Curiosidades Matemáticas: La conjetura de Polignac
  • services sprite Curiosidades Matemáticas: La conjetura de Polignac
  • services sprite Curiosidades Matemáticas: La conjetura de Polignac
  • services sprite Curiosidades Matemáticas: La conjetura de Polignac
  • services sprite Curiosidades Matemáticas: La conjetura de Polignac
  • services sprite Curiosidades Matemáticas: La conjetura de Polignac
  • services sprite Curiosidades Matemáticas: La conjetura de Polignac
  • services sprite Curiosidades Matemáticas: La conjetura de Polignac
  • services sprite Curiosidades Matemáticas: La conjetura de Polignac
  • services sprite Curiosidades Matemáticas: La conjetura de Polignac

No hay post relacionados.